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Abstract A novel sequence variant, c.240?109C[A, in

the Bruton’s tyrosine kinase (BTK) gene was identified in a

patient with X-linked agammaglobulinemia. This alteration

resulted in an incorporation of 106 nucleotides of BTK

intron 3 into its mRNA. Administration of the 25-mer

antisense morpholino oligonucleotide analog in the

patient’s cultured peripheral blood mononuclear cells was

able to restore correctly spliced BTK mRNA, a potential

treatment for X-linked agammaglobulinemia.
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Introduction

X-linked agammaglobulinemia (XLA; MIM 300300) is a

primary immunodeficiency disease characterized by an

aberration of B lymphocyte differentiation leading to a

decreased number of mature B cells and reduction of

immunoglobulin (Ig) production. After maternal Ig sup-

plies have dissipated, the low to absent Ig levels make the

infants with XLA more susceptible to severe bacterial

infections including otitis, sinusitis, and pneumonia, which

can be life threatening (Sideras and Smith 1995).

Approximately, 90 % of XLA are caused by alterations

in the Bruton’s tyrosine kinase (BTK) gene (Vihinen et al.

2000). It is involved in cell growth, survival, and migration

to blood circulation (Buggy and Elias 2012; Tsukada et al.

1993). The BTK gene spans 37.5 kb on the Xq21.3–Xq22

region and contains 19 exons, encoding the 659-amino acid

BTK enzyme. BTK alterations causing XLA are scattered

throughout the gene. These are archived in public available

databases including http://bioinf.uta.fi/BTKbase (Valiaho

et al. 2006; Zhang et al. 2006) and Resource of Asian

Primary Immunodeficiency Diseases in Asian populations

(http://rapid.rcai.riken.jp/RAPID). However, there have

been some patients whose alterations in BTK cannot be

detected (Kanegane et al. 2000; Moschese et al. 2000).

Autosomal recessive inheritance of agammaglobulinemia

has also been described and accounts for 15 % of patients

with agammaglobulinemia (Ferrari et al. 2007a). It is

genetically heterogeneous. Alterations in other genes

including IGHM, IGLL1, CD79A, BLNK, LRRC8, CD79B,

and PIK3R1 have been identified (Conley et al. 2012;

Dobbs et al. 2007; Ferrari et al. 2007b; Minegishi et al.

1998, 1999a, 1999b, 1999a, b; Sawada et al. 2003).

The current treatment for XLA patients includes an

intravenous infusion of immunoglobulins (IVIG) typically
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every 3–4 weeks beginning at the age of 10–12 weeks and

prophylactic antibiotics (D’Eufemia et al. 2000). Alterna-

tive treatments manipulating at the DNA or RNA levels

have been proposed (Du and Gatti 2011). Gene-corrected

stem cell-based therapy was studied in Btk-deficiency

mouse models (Hendriks et al. 2011). Antisense morpho-

lino oligonucleotides (AMOs) can be designed to restore

normal splicing by blocking aberrant splice sites (Zhao

et al. 2012). This strategy has been explored in several

genetic diseases (Corey and Abrams 2001; Du et al. 2007;

Rodriguez-Pascau et al. 2009; Vacek et al. 2003).

In this study, we identified and characterized a novel

mis-splicing variant located in intron 3 of the BTK gene

in a Thai patient with XLA. In addition, we demon-

strated that AMOs could restore normal mRNA BTK

splicing in the patient’s peripheral blood mononuclear

cells (PBMCs).

Materials and Methods

Case Report

A 4-year-old boy was diagnosed with XLA. He had

recurrent bacterial sepsis since the age of 1 year. Immu-

nological tests showed absence of circulating B cells, very

low levels of serum immunoglobulins, and neutropenia.

IVIG has been given since then. No other family members

had clinical features consistent with XLA.

Genetic Analysis

After informed consent, his peripheral blood was obtained

for RNA and DNA extraction and PBMC isolation. Both

parental DNA was also obtained. Total mRNA was isolated

by QIAamp� RNA blood mini kit (Qiagen, Hilden,

Germany). Reverse transcription-PCR (RT-PCR) was

performed using an RT-PCR kit (Promega, Madison, WI,

USA). The entire coding region of the BTK gene was

amplified by using a forward primer: 50-CAAT

GCATCTGGGAAGCTAC-30 and a reverse primer 50-
AGCTTGGGATTTCCTCTGAG-30. The 2,129-bp PCR

product was treated by ExoSAP-IT (USP Corporation,

Cleveland, OH, USA) prior to sending for direct

sequencing at the Macrogen Inc., Seoul, Korea. Sequence

analysis was performed by Sequencher 4.2 (Gene Codes

Corporation, Ann Arbor, MI, USA).

To identify the variant in DNA, genomic DNA covering

the intron 3 was PCR amplified and sequenced. The

primers were 50-CCTGGTGCCACCTCACTTTG-30 and

50-GATCCTGAGAGAACTGAGGG-30 with the expected

product size of 501 bp.

Pyrosequencing was used to screen for the presence of

the identified variant in 120 healthy female controls.

AMO Administration

Isolation of PBMCs from peripheral blood specimens was

performed using the standard protocol of Ficoll–Hypaque

density gradient centrifugation. PBMCs were then diluted

for cell counts and cultured in tissue culture medium RPMI

1640 supplemented with PenStrep and 10 % fetal bovine

serum. PBMCs were cultured in a 24-well plate at 8 9 105

cells per well. To activate PBMCs, we added 50 ll of

phytohemagglutinins (PHA) per well and PBMCs were

incubated overnight in a 5 % CO2 incubator.

Three specific 25-mer AMOs targeting the sequences

containing the aberrant splicing variant and normal control

sequences in intron 3 of the BTK gene were designed and

synthesized by GeneTools� in accordance with the man-

ufacturer’s criteria. The target AMO contained reverse-

complement sequences specific to ‘‘A’’ of the

c.240?109C[A and was expected to block an access of

the splicing machinery to the pre-mRNA (Table 1). The

Table 1 Nucleotide sequence of each AMO

AMOs Nucleotide sequence 50 ? 30

Target AMO TTTAAAGGAAACTTTACCGTGTTCC

MISIVS3 TTaAAAcGAAAgTTTACCGTcTTgC

InvertIVS3 CCTTGTGCCATTTCAAAGGAAATTT
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other two morpholino control oligos were MISIVS3, a

mispaired control with reverse-complement sequences

containing five nucleotide mismatches from the target

AMO, and InvertIVS3—the inverted direction of the target

AMO (Table 1).

Results

Sequence analysis of the entire coding region of the BTK

gene revealed an insertion of the 106-bp (?1 to ?106) into

the 50 end of the intron 3 (Fig. 1a). Sequencing of the

patient’s genomic DNA identified a c.240?109C[A

(IVS3?109C[A) variant (Fig. 1b). This splice site variant

has never been previously described. The change creates a

new cryptic 50 splice site resulting in an incorporation of

the 106-bp pseudoexon into intron 3 of the mature mRNA

(Fig. 1c). This unusual transcript is expected to result in a

truncated protein of 118 amino acid residues. This mutant

allele was inherited from the patient’s mother. It was

absent in 120 healthy female controls.

We tested if AMOs could restore normal mRNA BTK

splicing in the patient’s PBMCs. The target AMO was able

to correct the aberrant splicing defect caused by the

c.240?109C[A. While the InvertIVS3 with the same

length and base composition as the target AMO but

inverted direction had no effect on aberrant splicing cor-

rection, the MISIVS3 containing five nucleotide

mismatches had an effect on correction of aberrant splicing

(Fig. 2a).

To determine the optimal concentration and time course

of AMO administration on BTK transcription, AMOs with

different concentrations of 10–60 lM were delivered into

the overnight-grown PBMCs which were diluted by using

the peptide-based Endo-Porter system. RT-PCR was per-

formed to measure the mRNA expression levels using the

primers (BTKE3-mRNA_F1 GGAGAAGAGGCAGTAA

GAAG and BTKE4-mRNA_R GGGATAAGGGAACC

TTTCAA) that were located within cDNA sequences of

BTK exons 3 and 4 and the flanking 106-bp insertion.

After 24 h of AMO incubation (day 1), the RT-PCR was

carried out for 35 cycles. The 144-bp product which was

Fig. 1 The BTK sequence analysis. a Partial sequences of the cDNA

of the patient showing an insertion of 106 bp (?1 to ?106) into the 50

end of intron 3; b gDNA of the patient showing a c.240 ? 109C[A

(IVS3 ? 109C[A) variant inherited from the mother (arrows).

c Schematic representation of the BTK coding region with the

pseudoexon. Exons and pseudoexon are boxed. A splice site alteration

at c.240 ? 109C[A was located in intron 3
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the corrected splicing was detected, along with the 250-bp

band corresponding to the mis-spliced product in all AMO

concentrations. At the 24-h incubation, no differences of

the ratio between the aberrantly spliced RNA band and the

normally spliced band were observed in different AMO

concentrations (Fig. 2b).

We then explored the duration of effects of the AMOs.

First, activated PBMCs with 10 and 20 lM of AMOs were

cultured and harvested for RNA extraction at 24, 48, and

72 h. No differences of the ratio between the aberrantly and

the normally spliced bands were observed at different

durations (Fig. 2c).

PBMCs with 10 lM of AMO were further cultured and

harvested at days 1, 2, 3, 4, 10, 14, and 30. We demon-

strated that AMOs remained effective in restoring the

normal splicing up to 30 days (Fig. 2d).

Discussion

In this study we described a Thai patient with XLA.

Sequencing of the entire coding region of BTK revealed a

novel c.240?109C[A variant in intron 3. Of note, it is

located deep within an intron. Primers for PCR of the

genomic DNA are usually designed to cover an exon with

less than 60 bp of the franking introns. Therefore, if the

sequence analysis was performed by PCR sequencing of

the genomic DNA, this variant could have been missed.

Some reported XLA patients with unidentified BTK vari-

ants might have alterations in introns. Our approach

emphasizes the usefulness of sequencing complementary

DNA, complementing with sequencing genomic DNA.

The identified C [ A transversion at position 109 from

the 50 end of the intron 3 in our patient creates a new 50

cryptic splice site. Of the 129 splicing defects from a total

of 960 BTK alterations reported in the Asian populations

(Keerthikumar et al. 2009), 9 were reported at G or T

intronic splice sites (c.240?1G and c.240?2T) after the

BTK exon-3 coding region and A or G intronic splice sites

(c.241–1G and c.241–2A) before the BTK exon-4 coding

region. The novel c.240?109C[A variant reported in this

study did not affect the GT/AG splice sites directly, but it

could act as a new cryptic splice site. It resulted in an

aberrant 106-bp pseudoexon insertion. This leads to the

insertion of extra amino acids and a premature stop pro-

ducing a truncated 118-residue protein, instead of the

normal 659 residues.

Our study demonstrated the feasibility of delivering

specific AMOs into the patient’s activated PBMCs in vitro

to correct the aberrant splicing defect caused by the

c.240?109C[A and restore the normal transcript. The

AMOs were able to restore correctly spliced mRNA in

the patient’s PBMCs through skipping of the aberrant

inclusion by annealing to pre-mRNA and blocking access

of splicing factors or other cis-regulatory elements binding

at the splice sites (Dominski and Kole 1993).

The concentrations of AMOs we selected in this study

ranged 10–60 lM. No difference of their effectiveness was

observed at 24 h. The 10 and 20 lM of AMO treatment

also showed no difference at 72 h. We therefore used the

least concentrations (10 lM) to determine the duration of

Fig. 2 a An RT-PCR analysis of the patient’s PBMCs treated with

each AMO. The target AMO contained reverse-complement

sequences specific to ‘‘A’’ of the c.240 ? 109C[A to block an

access of the splicing machinery to the pre-mRNA. The InvertIVS3,

the inverted direction of the target AMO, and MISIVS3, a mispaired

control with reverse-complement sequences containing five nucleo-

tide mismatches from the target AMO, were used as control oligos.

The 144-bp corrected splicing product was detected when PBMCs

were treated with the target AMO and MISIVS3. b An RT-PCR

analysis of the BTK-mutated PBMCs treated with various concentra-

tions of target AMOs (10–60 lM). -ve negative control (no

template), Wt an unaffected control, Pt the patient’s PBMCs without

AMO treatment. c Correction of the aberrant splicing of the BTK

mRNA in PBMCs after AMO administration. Cells were treated with

two concentrations (10 and 20 lM) of the target AMOs. Total RNA

samples were collected at 24, 48 and 72 h after AMO administration

and analyzed by RT-PCR. -ve negative control (no template), Wt

RNA sample from an unaffected control, Pt the patient’s untreated

PBMCs. d Duration of effect of the target AMOs on aberrant splicing

correction. PBMCs derived from the patient were treated with

mutation-specific AMOs with a concentration of 10 lM. RT-PCR

analysis was performed in PBMCs treated with AMOs and harvested

at days 1, 2, 3, 4, 10, 14, and 30. Upper band the mutant PCR product;

lower band the wild-type PCR product
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effects of the AMO. We found that 10 lM of AMO could

have an effect up to 30 days.

Even with the highest concentration of AMOs (60 lM)

we used in our studies, aberrant RNA remained. It has been

demonstrated that only a small percent of factor VIII could

improve clinical manifestations of patients with hemophilia

A (Witmer and Young 2013). Therefore, a certain amount

of normal BTK protein might be sufficient for a patient with

XLA to have clinical improvement. Hence, AMOs could be

developed as a potential therapeutic tool for patients with

XLA caused by splicing defects even though all aberrations

could not be completely corrected.

Because AMOs were found to be effective in different

cell types, including activated PBMCs as in our study, and

able to target splice sites in a variety of pre-mRNAs, this

approach could be applied in several conditions. Clinical

trials which have been successfully performed by intra-

muscular administration of these therapeutic tools to

human patients have yielded promising results for patients

with Duchenne muscular dystrophy and dystrophic epi-

dermolysis bullosa (Goto et al. 2006; van Deutekom et al.

2007). These combined with several other observations in

diseases such as cystic fibrosis and b-thalassemia (Fried-

man et al. 1999) suggested the possibility of this approach

in the treatment of diseases with genetic defects.

Before delivery of the AMOs into the patients in clinical

settings, there are some concerns including a possibility of

the AMOs to interfere with the functions of other genes in

any tissue, leading to unwanted side effects (Carvajal et al.

2001). The published examples of such off-target effects

come from work on sea urchins, zebrafish, and Xenopus

(Corey and Abrams 2001). The detection of an effect on

aberrant splicing correction with the use of a control AMO,

a five-mispair oligo, indicates that our target AMOs have

low specificity and detrimental effects as aberrant splicing

correction of cellular mRNA might occur.

In conclusion, our studies suggest that AMOs could be

used as a therapeutic tool for a patient with XLA bearing an

intronic alteration in the BTK gene causing a splicing

defect. Similar therapeutic strategies could possibly be

applied to other types of BTK splice site alterations as well

as to other genetic disorders. As such, it would be inter-

esting to examine the effects of similar antisense

approaches on these types of alterations as well as to ini-

tiate in vivo experiments using animal models.
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